A Fast Boosting Based Incremental Genetic Algorithm for Mining Classification Rules in Large Datasets
نویسندگان
چکیده
Genetic algorithm is a search technique purely based on natural evolution process. It is widely used by the data mining community for classification rule discovery in complex domains. During the learning process it makes several passes over the data set for determining the accuracy of the potential rules. Due to this characteristic it becomes an extremely I/O intensive slow process. It is particularly difficult to apply GA when the training data set becomes too large and not fully available. An incremental Genetic algorithm based on boosting phenomenon is proposed in this paper which constructs a weak ensemble of classifiers in a fast incremental manner and thus tries to reduce the learning cost considerably. DOI: 10.4018/978-1-4666-3628-6.ch004
منابع مشابه
Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملNumeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملMining Classification Rules in the Presence of Concept Drift with an Incremental Genetic Algorithm
Traditional classification algorithms are ideally suited to the processing of small datasets with a stationary distribution, and therefore yield significant errors when applied to real-world datasets subject to concept drift. In the current study, this problem is resolved using an incremental genetic algorithm (IGA). An assumption is made that new training data are generated at a steady rate an...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJAEC
دوره 2 شماره
صفحات -
تاریخ انتشار 2011