A Fast Boosting Based Incremental Genetic Algorithm for Mining Classification Rules in Large Datasets

نویسندگان

  • Periasamy Vivekanandan
  • Raju Nedunchezhian
چکیده

Genetic algorithm is a search technique purely based on natural evolution process. It is widely used by the data mining community for classification rule discovery in complex domains. During the learning process it makes several passes over the data set for determining the accuracy of the potential rules. Due to this characteristic it becomes an extremely I/O intensive slow process. It is particularly difficult to apply GA when the training data set becomes too large and not fully available. An incremental Genetic algorithm based on boosting phenomenon is proposed in this paper which constructs a weak ensemble of classifiers in a fast incremental manner and thus tries to reduce the learning cost considerably. DOI: 10.4018/978-1-4666-3628-6.ch004

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm

Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Mining Classification Rules in the Presence of Concept Drift with an Incremental Genetic Algorithm

Traditional classification algorithms are ideally suited to the processing of small datasets with a stationary distribution, and therefore yield significant errors when applied to real-world datasets subject to concept drift. In the current study, this problem is resolved using an incremental genetic algorithm (IGA). An assumption is made that new training data are generated at a steady rate an...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJAEC

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011